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proceeds via a stereospecific olefin-forming pathway.21 Tet-
ramethylene-^2 generated from a 1,2-diazene decomposition23 

has the properties /:(cleavage)/&(closure) = 2.2 and A:(rota-
tion)/£(closure) = 12.2-s 
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Molecular Recognition of Nucleic Acid by Small 
Molecules. Binding Affinity and Structural Specificity of 
Bis(methidium)spermine 

Sir: 

Nucleic acids are biologically important receptors suffi­
ciently characterized to encourage the syntheses of site specific 
probes. Molecules capable of binding to nucleic acid templates 
and interfering with processes in which nucleic acids partici­
pate are important in both antibiotic and cancer chemother-

98, apy.1 Some drugs bind to nucleic acids by intercalation, the 
insertion of a flat molecule between the base pairs of a double 
helix.2 In the absence of unfavorable entropic or steric con­

straints, an increase in binding affinity and sequence specificity 
would be expected for polyintercalators3 which are capable of 
inserting two or more intercalating units into the nucleic acid 
double helix. 

We report the quantitative determination of the nucleic acid 
binding affinity and specificity which result when two inter­
calating monomers of ethidium bromide (EB),4 connected by 
a spermine5 link, are incorporated into the same molecule, 
bis(methidium)spermine (BMSp).3f The results presented in 
this paper clearly demonstrate that dimers constructed from 

CH 2 CH 3 

EB 

BMSp 

two intercalating monomers can bind nucleic acids with a free 
energy approaching the sum of the free energies of the mono-
meric constituents resulting in substantial increases in both 
binding affinity and specificity. 

BMSp (a) has a binding site size which is always twice that 
of EB,3f'6 (b) increases the length of double helical DNA 1.6 
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Figure I. Scatchard plots of the binding of BMSp to (a) calf thymus DNA 
and (b) poly (dG-dC)-poly(dG-dC) at 1 M N a + . The results of two ti­
trations ( • — • , • — A ) are shown for calf thymus DNA. The binding 
density, concentration of bound drug per base pair (v), is plotted against 
the ratio V/CF where CV equals the concentration of free drug. Dotted lines 
are theoretical plots generated by the von Hippel-McGhee binding 
equation12 for the indicated binding affinity, K, binding site size, «, and 
binding cooperativity, w. For noncooperative binding, w = 1. 

times more per bound molecule than EB as determined by 
viscometric titrations of "rigid-rod" DNA,7 and (c) unwinds 
DNA 1.5 times more per bound molecule than EB as deter­
mined by viscometric titrations of closed circular PM2 phage 
DNA.3f Taken together these data suggest that both EB 
moieties in BMSp simultaneously intercalate. The observations 
that the extension and unwinding of the DNA helix caused by 

V 4 

.02 .04 .06 .08 
"CT. 

Figure 2. Equilibrium dialysis competition plot at [Na+] = 1.0 M. The 
BMSp binding density to calf thymus DNA. CCT. is plotted against the 
poly(dG-dC)-poly(dG-dC)/calf thymus binding density ratio. 

BMSp binding are less than twice that observed for EB suggest 
that the intercalation geometry of the EB groups may be al­
tered for BMSp under conditions of low salt (0.075 M+). 

We measured the binding affinity of BMSp to four nucleic 
acids and compared these affinities to those measured for 
EB9-4c under nearly identical conditions. Binding measure­
ments were carried out at 1.0 M Na+ because at this salt 
concentration electrostatic contributions to the observed 
binding affinity10 and the intercalation geometry8 are mini­
mized. Thus, the nucleic acid affinities measured for BMSp, 
a tetracation at pH 7, can be directly compared to EB, a mo-
nocation. 

Two approaches have been taken toward determining the 
binding affinities of BMSp for different nucleic acids. The first 
method takes advantage of the spectral shift that occurs in the 
visible spectrum of BMSp when it binds nucleic acids.3f The 
concentrations of bound and free BMSp can be determined 
from such measurements assuming the formation of one 
complex.'' This data is then plotted in terms of a Scatchard 
plot (Figure I).'2 Comparison of the experimentally observed 
Scatchard plot to theoretical Scatchard plots generated by the 
binding equations of von Hippel-McGhee13 allows estimation 
of the binding affinity. This technique was used to determine 
the binding affinity of BMSp for calf thymus DNA, and 
poly(dG-dC)-poly(dG-dC).14 

The second approach used to determine the binding affinity 
of BMSp involves competition equilibrium dialysis.15 In this 
method, a three-part dialysis cell containing two different 
DNA species in the outer compartments is stirred to equilib­
rium. At equilibrium the two DNA-BMSp complexes are in 
simultaneous equilibrium with the same concentration of free 
BMSp. The ratio of the association constants of BMSp for two 
nucleic acids i ar\dj(K//Kj) can then be determined directly 
from the observed ratio of binding densities (VJ/VJ) in the limit 
of low binding density (v,, Vj —- 0). Unlike Scatchard plots, the 
competition approach allows relative binding affinities to be 
determined without specifying the binding site size and binding 
cooperativity of each complex (see Figure 2). 

We have used this competition dialysis approach to deter­
mine the binding affinity of BMSp to poly(dG-dC)-
poly(dG-dC) and poly(rA)-poly(dT). By conducting compe­
tition dialysis between several different pairs of nucleic acids, 
we have been able to internally verify the binding affinities 
obtained by the competition approach as well as the relative 
binding affinities obtained by the titration approach. Combi­
nation of the two methods allows an estimation of the binding 
affinity to within an accuracy of ± 10% for calf thymus DNA, 
(dG-dC)-(dG-dC), and rA-dT. The results are summarized 
in Table I. 

At 1.0 M Na+, for the four nucleic acids studied, we find 
that A^BMSP

 =
 (KEB)1,4"1 '8) or the free energy of dimer binding 

is 1.4-1.8 times that of the monomer: AGeviSp = 1.4-
1.8ACEB. 

The binding affinity of BMSp for nucleic acid at salt con­
centrations other than 1 M Na+ can be estimated from a 
consideration of the binding process in terms of the polyelec-
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Table I 

nucleic acid 

calf thymus 
calf thvmus 

(dG-dC)-(dG-dC) 
dA-dT 
rA-dT 

Na + (M) 

0.075 
1.0 
1.0 
1.0 
1.0 

A^KB 

2 X 105 M -
4.2 X 104 M -
2.0X 104 M -

2 X 103 M -
2.3 X 105 M -

^ B M S p 

h >2 X 1011 M" 1 

1.5 X 107 M" 1 

7.5 X 107 M - 1 

a 4.4 X 104 M - ' 
« 2 . 3 X l O 8 M " 1 

" From Bresloff and Crothers.9 * Data of LePecq4c reanalyzed in 
terms of von Hippel-McGhee equations. 

trolyte theory of Manning.16 As shown by Record et al.,10 the 
observed binding affinity, A"0bsd, of a ligand at a monovalent 
cation concentration equal to M+ can be estimated by the 
equation KobiA = K0[M+]"^, where Â 0 is the binding affinity 
at 1 M Na+, n is the number of ion pair interactions which the 
ligand makes with nucleic acid, and \p is the charge density 
parameter which is known for a variety of nucleic acids. For 
example, from Table I, at 1 M Na+ the binding affinity of 
BMSp is 1.5 X 107 M-' or 3.6 X 102 times greater than EB. 
At low salt, 0.075 M, where electrostatic contributions become 
more important, the estimated affinity of BMSp for calf thy­
mus is 1 X 10" M - 1 or 106 times greater than EB. This esti­
mate compares favorably with the estimated affinity, K S; 2 
X 10" M - ' , determined experimentally from spectrophoto-
metric titrations.17 

In addition, the binding specificity of BMSp compared to 
EB is substantially increased. From the work of Crothers,9 it 
is known that the binding of the monomer EB to the RNA-
DNA hybrid rA-dT is favored over the DNA-DNA duplex 
dA-dT by a factor of 100. This 100-fold specificity exhibited 
by EB increases to 5200 for BMSp. Since the only difference 
between rA-dT and dA-dT is the presence of the 2'-hydroxyl 
group on the sugar ring and not base sequence, these results 
indicate that the specificity which BMSp and EB9 exhibit for 
certain nucleic acids can arise from preferential recognition 
of different nucleic acid conformations. 
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Mode of Nucleophilic Addition to Epichlorohydrin 
and Related Species: Chiral Aryloxymethyloxiranes 

Sir: 

Nucleophilic attack on epichlorohydrin (la) or a related 
methyloxirane (1) generally results in the formation of a new 
methyloxirane 2.N8 In principle, 2 may be derived from 1 via 
two distinct processes: (1) direct displacement of the leaving 

X Displacement 

(Retention) 

(S)-I (s)-a 

W-2 

Epoxide Attack 

(inversion) 

la X=Cl; lb X=OMs; Ic X=OTf 

group (path a) or (2) initial epoxide attack (3) followed by 
extrusion of the leaving group (path b). In spite of considerable 
effort, the mechanism of such a nucleophilic addition has yet 
to be conclusively established.4-7 

Since the stereochemistry of the products obtainable from 
chiral I9-10 according to paths a or b would not be identical, a 
determination of the absolute configuration and chiral purity 
of 2 would establish the mode of nucleophilic addition. Our 
results from the reactions of chiral I9,10 with various phenols 
to give chiral aryloxymethyloxiranes reported herein indicate 
that the mode of nucleophilic addition depends on the leaving 
group involved and the conditions used. 

The reactions of (R)- and/or (S)-I with phenols 4a-c have 
been examined using two sets of conditions: (1) refluxing in 
acetone or CH2CI2 in the presence of K2CO3 and (2) stirring 
1 with the preformed phenoxide in DMF or THF. The S/R 
ratios presented were determined by an examination of the ' H 
NMR spectra of 5 in the presence of a chiral shift reagent, 
Eu(hfbc)3,9'12'13 and by optical rotation. 

( S ) - 7 ; Z=OMs o r OT. 

The absolute configuration of 5 obtained from (7?)-la under 
acetone-K2C03 conditions was established by the reaction 
with rert-butylamine to give 6, which was then compared with 
chirally pure (S)-6 synthesized from (S")-?.14 The unambig­
uous assignment of the predominant configuration of 5 and 6 
derived from (R)-In as (S)15 was thus possible. TheS/R ratios 
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